Posted in Ֆիզիկս

Ֆիզիկա 16-20

9-րդ դասարանցիներին առաջարկում եմ, որ այս օրերին շարունակեն օպտիկական երևույթների ուսումնասիրությունը, որը մենք նախորդ շաբաթ արդեն սկսել էինք ուսումնասիրել: Շարունակելով թեման՝ ուղարկում եմ անհրաժեշտ նյութերը, որպեսզի ծանոթանաք լույսի բեկման երևույթի, բեկման օրենքի հետ և ոսպնյակների, ոսպնյակի օպտիկական ուժի հետ: Խրախուսելի է նաև այլ՝ լրացուցիչ աղբյուրներից օգտվելը:

Ֆիզիկա և աստղագիտություն 9 պարագրաֆներ 31 և 32

Laws of Refraction of Light

Convex and Concave Lenses

Коэффициент преломления

Линзы. Оптическая сила линзы

Օպտիկական երևույթներ մթնոլորտում, մթնոլորտում արեգակնային ճառագայթների ցրման, բեկման, անդրադարձման և դիֆրակցիայի հետևանքով դիտվող երևույթներ։ Հայաստանում նկատվում են ՝ծիածան, որը պայմանավորված է ջրային կաթիլներում արեգակնային ճառագայթների բեկմամբ և անղրադարձմամբ, գալո, լուսավոր, գունավոր շրջանակներ, արեգակի կամ լուսնի շուրջը նկատվող բծեր, որոնք առաջանում են բարձր ամպերի սառցե բյուրեղներում լույսի բեկումից կամ անդրադարձումից, միրաժ (օդատեսիլք), լույսի անկանոն բեկման արդյունք, երբ մթնոլորտում լրիվ ներքին անդրադարձման հետևանքով, բացի առարկայից, երևում է նաև նրա կեղծ պատկերը։ Լուսնի բեկումով է պայմանավորված նաև երկնայիև լուսատուների իրական դիրքից բարձր երևալը։ Ունի երկնակամարում ձգվող բազմերանգ աղեղի տեսք, հայոց մեջ ծիածանը կոչվում է նաև ծիրանի գոտի, աստվածակամար։ Հորիզոնի մոտ գտնվելիս արեգակի և լուսնի սկավառակները թվում են սեղմված։ Օպտիկական երևույթներից են նաև արևածագը, աղջամուղջը, մթնշաղը, երկնակամարի գույնը և այլն։Լույսի ուղղագիծ տարածման օրենքը։ Համասեռ միջավայրում լույսը տարածվում է ուղիղ գծերով:

Posted in Ֆիզիկս

Հաստատուն մագնիսներ

Հաստատուն մագնիսներ: Երկրի մագնիսական դաշտը
 Մագնիսական երևույթները, ինչպես և էլեկտրական երևույթները, մարդկության հայտնի էին դեռ շատ վաղ ժամանակներից: Մ. թ. ա. VI դարում արդեն գիտեին երկաթե իրերը դեպի իրեն ձգող հանքատեսակի մասին, որին անվանում էին «չու-շի», այսինքն՝ սիրող քար

tes3.jpg

              Հետագայում այն անվանեցին բնական մագնիս, քանի որ, երկաթաքարի մեծ քանակներ հայտնաբերվեցին Փոքր Ասիայի Մագնեսիա քաղաքի շրջակայքում:
Մագնիս նշանակում է «Մագնեսիայից բերված քար»:
Ուսումնասիրելով բնական մագնիսները մարդիկ ծանոթացան մարմինների մագնիսական հատկությունների և մագնիսական երևույթների հետ:
Այժմ հայտնի է, որ բնական մագնիսները մագնիսական երկաթաքարի՝ մագնետիտի կտորներ են, որը կազմված է FeO-ից (31 և Fe2O3-ից \(69%)\:Սակայն մագնետիտն ուժեղ մագնիսական հատկություն՝ այսինքն երկաթե իրերը դեպի իրենց ձգելու հատկություն չունի: Զգալիորեն ուժեղ մագնիսական հատկությամբ արհեստական մագնիսներ ներկայումս ստանում են երկաթի, նիկելի և կոբալտի համաձուլվածքից:Արհեստական մագնիսներին հատուկ ձև են տալիս և հաճախ ներկում երկու գույնով: Լինում են ձողաձև, պայտաձև, ուղղանկյունաձև, օղակաձև և այլ մագնիսներ: 

tes4.jpg

         Իրենց մագնիսական հատկությունները երկար ժամանակ անփոփոխ պահպանող մագնիսներին անվանւմ են հաստատուն մագնիսներ:Նրանք կարող են լինել թե՛ բնական, և թե՛ արհեստական: Պարզագույն փորձերի միջոցով կարելի է պարզել հաստատուն մագնիսների մի շարք հատկություններ. 1. Հաստատուն մագնիսները ձգում են երկաթ կամ երկաթի համաձուլվածք պարունակող մարմինները և չեն ձգում փայտից, ապակուց, գունավոր մետաղներից և այլ նյութերից պատրաստված առարկաները: 

2016.1.gif

2. Մագնիսները ունակ են մագնիսացնելու մոտակա կամ իրենց հպվող երկաթե առարկաներ: Այդ առարկաների մագնիսական հատկությունները ժամանակավոր են և մագնիսացման աղբյուրը վերացնելիս, որոշ ժամանակ անց, անհետանում են: 3. Հատատուն մագնիսի հատկությունները նրա տարբեր մասերում նույնը չեն: Փորձը ցույց է տալիս, որ առավել ուժեղ մագնիսական հատկություն է հայտնաբերվում մագնիսի ծայրերին, իսկ կենտրոնում մագնիսը գրեթե չի ձգում երկաթե իրերը:Օրինակ՝ եթե մագնիսը հպենք երկաթի հատույթին և հեռացնենք, ապա կնկատենք, որ նա հիմնականում կպչում է մագնիսի ծայրերին: 

tes8.jpg

Մագնիսի այն տեղամասերը, որտեղ մագնիսական ազդեցությունն առավելագույնն է, կոչվում են մագնիսի բևեռներ:Յուրաքանչյուր մագնիս ունի 2 բևեռ: Համապատասխանաբար՝ S հարավային և N հյուսիսային: Մագնիսական փոխազդեցության օրինաչափությունները պարզաբանելու համար հաճախ օգտվում են մագնիսական սլաքից:Մագնիսական սլաքը՝ բարակ, երկարավուն, շեղանկյունաձև մագնիսի թիթեղ է, որը տեղադրված է սայրին և կարող է հեշտությամբ պտտվել նրա շուրջը:тес9.jpg Սլաքի տեսքով պատրաստված մագնիսն օգտագործում են կողմացույցում, որտեղ այն ազատորեն պտտվում է՝ ցույց է տալիս դեպի հյուսիս ուղղությունը: Կողմանացույցը հայտնագործվել է մոտ 2000 տարի առաջ Չինաստանում և կոչվել է հարավի ցուցիչ

 Սլաքի դերն այստեղ կատարում է բնական մագնիսից պատրաստված «գդալը», որը հեշտությամբ պտտվում է իր ուղղաձիգ առանցքի շուրջը: Ժամանակակից կողմացույցի սլաքն ունի այլ գույնով ներկված բևեռ: Կողմացույցի այդ բևեռներից մեկը, որը ցույց է տալիս աշխարհագրական հյուսիսը, կոչվում է հյուսիսային բևեռ N, հակադիրը՝ հարավային բևեռ S: 

 Նույն նշանները և անվանումները գործածվում են նաև ցանկացած ուրիշ մագնիսի մագնիսական բևեռները նշելու համար: Փորձերը ցույց են տալիս, որ մագնիսները փոխազդում են միմյանց հետ, ընդ որում մագնիսի տարանուն բևեռները իրար ձգում են, իսկ նույնանուն բևեռները վանում

91762-004-759441A3.jpg

 Փոխազդեցությունն իրականացվում է մագնիսի կողմից ստեղծվող հատուկ դաշտով, որին անվանում են մագնիսական դաշտ

2016.5.gif
2016.2.gif

Մագնիսական դաշտը մատերիայի առանձնահատուկ տեսակ է, որը տարբերվում է նյութից և իր շուրջը գոյություն ունեցող մագնիսացած մարմիններից:Մագնիսական դաշտ կարելի է հայտնաբերել փորձով, մագնիսական սլաք տեղադրելով, որի վրա մագնիսական դաշտի կողմից ազդող ուժը կպտտեցնի և կկողմնորոշի նրան:Մագնիսների, ինչպես նաև մագնիսի և երկաթի փոխազդեցությունը իրականցվում է մագնիսական դաշտի միջոցով:Հայտնի է, որ երկաթի կտորը միշտ ձգվում է մագնիսի կողմից՝ նշանակում է, որ մագնիսին մոտեցնելիս այն մագնիսանում է այնպես, որ մագնիսին մոտ մասում առաջանում է հակառակ բևեռը: Երկրգունդը հսկայական մագնիս է, այն ունի իր մագնիսական բևեռները, իր շուրջը ստեղծում է մագնիսական դաշտ և փոխազդում է մագնիսական սլաքի հետ: 

magnitnoe-pole-Zemli.jpg

 Երկրագնդի մագնիսական դաշտի գծերի ողղությամբ էլ դասավորվում է մագնիսական սլաքը տարածության տվյալ կետում: Քանի որ տարանուն մագնիսական բևեռներն իրար ձգում են, ուրեմն մագնիսական սլաքի հյուսային՝ N, բևեռը ուղղված կլինի դեպի Երկրի հարավային՝ S, մագնիսական բևեռ: Այս բևեռը գտնվում է Երկրագնդի հյուսիսում` աշխարհագրական հյուսիային բևեռից մի փոքր հեռու (Ուելսի արքայազնի կղզում): Երկրագնդի հյուսիսային մագնիսական բևեռը` N-ը, գտնվում է նրա հարավային աշխարհագրական բևեռի մոտակայքում: Հսկայական է Երկրի մագնիսական դաշտի պաշտպանական դերը Երկրագնդի մթնոլորտի, նրա վրա գտնվող բուսական, կենդանական աշխարհի և մարդու համար: 

420972.jpg

 Արեգակից դեպի Երկիր շարժվող մասնիկների՝ էլեկտրոնների և պրոտոնների հոսքը, հանդիպելով Երկրի մագնիսական դաշտին, փոխազդում է նրա հետ և արդյունքում հավաքվում է մագնիսական բևեռներում, առաջացնելով հյուսիափայլի կամ բևեռափայլի երևույթը: Հյուսիսափայլի երևույթն ավելի ինտենսիվ է դիտվում Արեգակի ակտիվացման ժամանակ, երբ մեծանում է լիցքավորված մասնիկների հոսքը:

Posted in Ֆիզիկս

Էլեկտրական լարում

Էլեկտրական հոսանքը լիցքավորված մասնիկների ուղղորդված շարժում է, որն առաջանում է, երբ էլեկտրական դաշտի կողմից նրանց վրա ուժ է ազդում և հետևաբար աշխատանք է կատարվում: Հոսանքի աշխատանքը համեմատական է տեղափոխված լիցքի քանակին՝ q-ին, հետևաբար նրա հարաբերությունը այդ լիցք քանակին հաստատուն մեծություն է և  կարող է բնութագրել էլեկտրական դաշտը հաղորդչի ներսում: Այդ ֆիզիկական մեծությունը կոչվում է լարում և նշանակվում է U տառով: Լարումը  ցույց է տալիս տվյալ տեղամասով 1Կլ լիցք անցնելիս էլեկտրական դաշտի կատարած աշխատանքը:Լարումը սկալյար ֆիզիկական մեծություն է, որը հավասար է դաշտի կատարած աշխատանքի  հարաբերությանը հաղորդչով տեղափոխված լիցքի քանակին:U=Aq Էլեկտրական լարման միավորը կոչվում է վոլտ (Վ) հոսանքի առաջին աղբյուր ստեղծող Ա. Վոլտայի պատվին: 

-1731122369_w472h598.png

 այն լարումն է, որի դեպքում շղթայի տեղամասով 1Կլ լիցք տեղափոխելիս էլեկտրական դաշտը կատարում է 1Ջ աշխատանք:1Վ=1Ջ1կլ=1Ջ/Կլ Գործածվում են նաև 1մՎ, 1կՎ և 1ՄՎ միավորները: Ընդ որում՝ 1մՎ =10−3Վ1կՎ =103Վ1ՄՎ =106ՎԼարումը չափող սարքը կոչվում է վոլտաչափ:

1173714.jpg

 Վոլտաչափի  պայմանական նշանն է ` 

fiz9gromrod-448.png

 Էլեկտրական շղթային վոլտաչափ միացնելու դեպքում անհրաժեշտ է պահպանել հետևյալ կանոնները.

  1. Վոլտաչափի սեղմակները միացվում են էլեկտրական շղթայի այն կետերին, որոնց միջև անհրաժեշտ է չափել լարումը՝ չափվող տեղամասին զուգահեռ:
  2. Վոլտաչափի «+» նշանով սեղմակն անհրաժեշտ է միացնել էլեկտրական շղթայի չափվող տեղամասի այն կետի հետ, որը միացված է հոսանքի աղբյուրի դրական բևեռին, իսկ «−» նշանով սեղմակը՝ բացասական բևեռին: 
v.gif
54.jpg
Posted in Ֆիզիկս

Էլեկտրական շղթա

Եթե լիցքավորված էլեկտրաչափի մետաղե գունդը միացնենք չլիցքավորված էլեկտրաչափի գնդին մետաղալարով, որին միացված է էլեկտրական լամպ, ապա կստանանք կարճատև լուսարձակում՝ այսինքն կարճատև հոսանք: Հոսանքը կտևի այնքան ժամանակ, մինչև էլեկտրաչափի լիցքերը հավասարվեն: 

Screenshot_1.png

 Որպեսզի հոսանքը տևական ժամանակ գոյություն ունենա, անհրաժեշտ է հոսանքի աղբյուրի առկայություն:Հոսանքի աղբյուրը հատուկ սարք է, որը հաղորդիչում էլեկտրական դաշտ է առաջացնում:Առաջին պարզագույն հոսանքի աղբյուրը, որը մինչ այժմ գործածվում է, գալվանական տարրն է, որն այդպես է կոչվում ի պատիվ իտալացի կենսաբան, բժիշկ Լուիջի Գալվանիի

art232-galvani-luigi.jpg

 Գալվանական մարտկոցները միանվագ օգտագործման հոսանքի աղբյուրներ են: Ավտոմեքենայում, բջջային հեռախոսներում մեծ կիրառություն ունեն բազմակի օգտագործման հոսանքի աղբյուրները՝ լիցքակուտակիչները (ակումուլյատորները), որոնք կարելի է լիցքավորել և նորից օգտագործել: 

b3.jpg
AASG-166_big.jpg
203087.jpg

 Հոսանքի ցանկացած նմանօրինակ աղբյուր երկու բևեռ ունի՝ դրական (+) և բացասական (-): Այդ բևեռների մոտ կուտակված տարբեր լիցքերը պայմանավորված են հոսանքի աղբյուրի ներսում ընթացող քիմիական ռեակցիաներով: Ռեակցիաները տեղի են ունենում հատուկ լուծույթի մեջ խորասուզված հաղորդիչների՝ էլեկտրոդների միջև:Դրական էլեկտրոդն անվանում են անոդ, իսկ բացասականը՝ կաթոդ:Եթե հաղորդալարերի միջոցով հոսանքի սպառիչը՝ օրինակ լամպը կամ զանգը միացվի հոսանքի աղբյուրին, ապա նրանց միջով հոսանք կանցնի՝ լամպը կլուսարձակի, զանգը կհնչի: 

0004-004-Vyberite-pary.png

 Հոսանքի աղբյուրը և հոսանքի սպառիչը միացված հաղորդալարերով կազմում են էլեկտրական շղթա:Էլեկտրական շղթաները ներկայացնող գծագրերը կոչվում են էլեկտրական սխեմաներ:Էլեկտրական շղթայի յուրաքանչյուր տարր սխեմայում պատկերվում է հատուկ պայմանական նշանով: Նշաններից մի քանիսը ներկայացված են աղյուսակում: 

Screenshot_3.png

 Շղթաները բացի հոսանքի աղբյուրից և սպառիչներից, պարունակում են անջատիչներ, որոնց միջոցով կարելի է բացել կամ փակել շղթան՝ կարգավորելով հոսանքի անցումը, և չափիչ սարքեր՝ չափումներ կատարելու համար: 

13.gif

            Շղթայում էլեմենտները միմյանց կարող են միացվել հաջորդական կամ զուգահեռ:      Բացի հոսանքի քիմիական աղբյուրից կան նաև հոսանքի ֆիզիկական աղբյուրներ, որտեղ մեխանիկական, ջերմային, էլեկտրամագնիսական, լուսային և այլ էներգիաներ փոխակերպվում են էլեկտրականի: Այդպիսի հոսանքի աղբյուրի օրինակ է էլեկտրական գեներատորը:  

‘Внутренний вид электрической станции в Гундукуше’ [Иолотань].jpg
Posted in Ֆիզիկս

էլեկտրական հոսանք

Էլեկտրական հոսանք: Էլեկտրական լիցքերը կարող են տեղաշարժվել, հաղորդվել, առաջացնելով էլեկտրական հոսանք: Ըստ իրենց լիցք հաղորդելու հատկության, նյութերը բաժանվում են հաղորդիչների և մեկուսիչների: Էլեկտրականության հաղորդիչներ են. մետաղները, գրաֆիտը, մարդու և կենդանիների մարմինները, խոնավ հողը և այլն։ Ոչ հաղորդիչներ կամ մեկուսիչներ են. ապակին, չոր փայտը, ռետինը, մարմարը և այլն։Հաղորդիչներով լիցքավորված մասնիկների ուղղորդված շարժումը, որի արդյունքում տեղի է ունենում լիցքի տեղափոխություն, կոչվում է էլեկտրական հոսանք:Էլեկտրական հոսանքի շնորհիվ են լուսավորվում քաղաքներն ու գյուղերը, ջեռուցվում բնակարանները: Էլեկտրական հոսանքով են աշխատում բազմաթիվ կենցաղային սարքեր: 

85c32b8bb97ef198923b6eb99af2ca1c.jpg
technika_podarok.jpg

 Էլեկտրական հոսանքի առաջացման համար անհրաժեշտ են հոսանքի աղբյուրներ և հաղորդալարեր, որոնց միջոցով էլեկտրական հոսանքն էլեկտրակայաններից մեր բնակարաններ կհասնի:Որոշ կենցաղային սարքերի, օրինակ` ձեռքի լուսարձակի, հեռակառավարման վահանակի, հաշվիչի աշխատանքի համար օգտագործում են  գալվանական տարրեր, ավտոմեքենաներում` կուտակիչներ

120e9d27a56cd7603ea1_content_big_87fde87d.jpg

Էլեկտրակայանները, գալվանական տարրերը, կուտակիչները կոչվում են հոսանքի աղբյուրներ:ՈւշադրությունՀոսանքի աղբյուրներն ունեն երկու բևեռ` դրական «+» և բացասական «–»: Հոսանքի աղբյուրը սարքին պետք է միացնել այնպես, որ աղբյուրի «+» բևեռը համընկնի սարքի «+» բևեռին, իսկ աղբյուրի «–» բևեռը` սարքի «–» բևեռին:  

Soprot1.gif

 Էլեկտրական սարքը աշխատեցնելու համար այն հաղորդալարերով միացնում են հոսանքի աղբյուրին՝ կազմելով էլեկտրական շղթա:ՕրինակՇարժանկարում պատկերված է պարզագույն էլեկտրական շղթան՝ կազմված հոսանքի աղբյուրից, լամպից, անջատիչից և դրանք իրար միացնող հաղորդալարերից:Երբ շղթան փակ է, դրանով հոսանք է անցնում, երբ բաց է՝ ոչ: 

lamp_animate.gif
Posted in Ֆիզիկս

Էլեկտրական դաշտ

Էլեկտրական դաշտԼիցքավորված մարմինների փոխազդեցությունը ներկայացնող փորձերից երևում է, որ նրանք ի վիճակի են միմյանց վրա ազդել տարածության վրա: Ընդ որում, որքան մոտիկ են էլեկտրականացված մարմիններն, այնքան ուժեղ է նրանց միջև փոխազդեցությունը: 

Screenshot_5.png

 Նմանատիպ փորձեր կատարելով անօդ տարածության մեջ, երբ պոմպի միջոցով անոթի միջից օդը դուրս էր մղված, գիտնականները համոզվեցին, որ էլեկտրական փոխազդեցություն հաղորդելու գործին օդը չի մասնակցում: 

Screenshot_6.png

 Լիցքավորված մարմինների փոխազդեցության մեխանիզմն իրենց գիտական աշխատանքներում ներկայացրեցին անգլիացի գիտնականներՄ. Ֆարադեյը և Ջ. Մաքսվելլը: Նրանց ուսմունքի՝ մերձազդեցության տեսության համաձայն, լիցքավորված մարմիններն իրենց շուրջը ստեղծում են էլեկտրական դաշտ, որի միջոցով էլ իրագործվում է էլեկտրական փոխազդեցությունը:Էլեկտրական դաշտը մատերիայի հատուկ տեսակ է, որը գոյություն ունի ցանկացած լիցքավորված մարմնի շուրջ:Մեր զգայարանների վրա այն չի ազդում, հայտնաբերվում է հատուկ սարքերի օգնությամբ:Էլեկտրական դաշտի հիմնական հատկություններն են. 1. Լիցքավորված մարմնի էլեկտրական դաշտը որոշ ուժով ազդում է իր ազդեցության գոտում հայտնված ցանկացած այլ լիցքավորված մարմնի վրա:

zar1.gif
zar2.gif

2. Լիցքավորված մարմնի էլեկտրական դաշտը մարմնին մոտ տիրույթում ուժեղ է, իսկ նրանցից հեռանալիս թուլանում է: 

images.jpg

Այն ուժը, որով էլեկտրական դաշտն ազդում է լիցքավորված մարմնի վրա, անվանում են էլեկտրական ուժ՝  Fէլ:Այդ ուժի ազդեցության տակ էլեկտրական դաշտում հայտնված լիցքավորված մասնիկը ձեռք է բերում արագացում, որն ըստ ՆյուտոնիII օրենքի հավասար է a=Fէլm, որտեղ m−ը մասնիկի զանգվածն է:Էլեկտրական դաշտը կարելի է գրաֆիկորեն պատկերել ուժագծերի օգնությամբ:Էլեկտրական դաշտի ուժագծերն այն ուղղորդված գծերն են, որոնք ցույց են տալիս դրական լիցքավորված մասնիկի վրա ազդող ուժի ուղղությունն այդ դաշտում:  

silovielinii2.jpg
electric-field.jpg
image002.png

 Նկարում պատկերված են կետային լիցքերի և լիցքավորված թիթեղների էլեկտրական դաշտի ուժագծերը:Եթե մասնիկի լիցքը դրական է, ապա ուժագծերի ուղղությամբ շարժվելիս նրա արագությունը կաճի, հակառակ ուղղությամբ շարժվելիս՝ կնվազի: Իսկ եթե մասնիկի լիցքը բացասական է, ապա նրա արագությունը կաճի ուժագծերին հակառակ շարժման դեպքում:

Posted in Ֆիզիկս

Ատոմի կառուցվածք

Ատոմի կառուցվածքը Էլեկտրական երևույթները բացատրելու համար անհրաժեշտ է պարզել ատոմի կառուցվածքը: Այդ ուղղությամբ առաջին հայտնագործությունը կատարեց անգլիացի գիտնական Ջ.  Թոմսոնը: 1898 թվականին նա հայտնաբերեց ատոմի կազմի մեջ մտնող և տարրական լիցք կրող փոքրագույն մասնիկը՝ էլեկտրոնը

томс.jpg
images.jpg

Էլեկտրոնի լիցքը՝  qe=−e=−1,6⋅10−19Կլ, իսկ զանգվածը՝ me=9.1⋅10−31կգԷլեկտրոնը անհնար է «զատել» իր լիցքից, որը միշտ միևնույն արժեքն ունի: Տարբեր քիմիական տարրերի ատոմներում պարունակվում են տարբեր թվով էլեկտրոններ: Շարունակելով ատոմի կառուցվածքի բացահայտման հատուկ փորձերը, անգլիացի գիտնական Էռնեստ Ռեզերֆորդը 1911թ.-ին ներկայացրեց ատոմի կառուցվածքի վերաբերյալ իր մոդելը, որն անվանեցին մոլորակային:   

REZERFORD_Ernst3.jpg
atom1.jpg

Ըստ Ռեզերֆորդի նյութի՝ յուրաքանչյուր ատոմ կարծես փոքրիկ Արեգակնային համակարգ է, որի կենտրոնում դրականապես լիցքավորված միջուկն  է: Էլեկտրոնները պտտվում են միջուկի շուրջը նրա չափերից շատ ավելի մեծ հեռավորությունների վրա, ինչպես մոլորակները Արեգակի շուրջը:Էլեկտրոնները շարժվում են արագացմամբ (մոտ 1022մ/վ2), որի պատճառը միջուկի և Էլեկտրոնի փոխադարձ ձգողությունն է: Էլեկտրոնի և միջուկի գրավիտացիոն փոխազդեցությունը շատ փոքր է` մոտ 10−40ն, հետևաբար նրանց փոխազդեցությունը հիմնականում էլեկտրամագնիսական բնույթի է: Սովորական վիճակում մարմինը, ինչպես և նրա կառուցվածքային տարրերը՝ ատոմները, էլեկտրաչեզոք են: Ուրեմն վերջինիս բոլոր էլեկտրոնների գումարային լիցքի բացարձակ արժեքը հավասար է միջուկի լիցքին:Տարբեր տարրերի ատոմները միմյանցից տարբերվում են իրենց միջուկի լիցքով և այդ միջուկի շուրջը պտտվող Էլեկտրոնների թվով:

Screenshot_2.png

 Դ. Ի. Մենդելեևի քիմիական տարրերի պարբերական աղյուսակում տարրերի կարգաթիվը՝ Z-ը, համընկնում է սովորական վիճակում տվյալ տարրերի ատոմի մեջ պարունակվող էլեկտրոննեի թվի հետ, հետևաբար էլեկտրոնների գումարային լիցքը ատոմում հավասար է՝ qէլ.=−Z⋅e Միջուկի լիցքը կլինի՝ qմիջ.=+Z⋅e Ատոմի միջուկը ևս բարդ կառուցվածք ունի. նրա կազմության մեջ մտնում են տարրական դրական լիցք կրող մարմիններ՝ պրոտոններ: qp=e=1,6⋅10−19կլ Պրոտոնի զանգվածը մոտ 1840 անգամ մեծ է էլեկտրոնի զանգվածից: Դատելով միջուկի լիցքից կարելի է պնդել.Ատոմի միջուկում պրոտոնների թիվը հավասար է տվյալ քիմիական տարրի կարգահամարին՝ Z-ին:Ինչպես ցույց տվեցին հետազոտությունները, բացի պրոտոններից միջուկի պարունակում է նաև չեզոք մասնիկներ, որոնց անվանում են նեյտրոններ:  Նեյտրոնի զանգվածը փոքր ինչ մեծ է պրոտոնի զանգվածից: Նեյտրոնների թիվը միջուկում նշանակում են N տառով: Միջուկի պրոտոնների՝  Z թվի և նեյտրոնների N թվի գումարին անվանում են միջուկի զանգվածային թիվ և նշանակում A տառով: A=Z+N, որտեղից՝ N=A−Z A-ն կարելի է որոշել Մենդելեևի աղյուսակից՝ կլորացնելով տրված տարրի հարաբերական ատոմային զանգվածը մինչև ամբողջ թիվ:Այսպիսով, ատոմի կենտրոնում դրական լիցք ունեցող միջուկն է, որը կազմված է Z պրոտոնից և N նեյտրոնից, իսկ միջուկի շուրջը, եթե ատոմը չեզոք է, պտտվում են Z Էլեկտրոններ:Որոշ դեպքերում ատոմները կարող են կորցնել մեկ կամ մի քանի էլեկտրոններ: Այդպիսի ատոմն այլևս չեզոք չէ, այն ունի դրական լիցք և կոչվում է դրական իոն: Հակառակ դեպքում, երբ ատոմին միանում է մեկ կամ մի քանի էլեկտրոն, ատոմը ձեռք է բերում բացասական լիցք և վեր է ածվում բացասական իոնի: 

p-08a-2.gif